
IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002 347

A Distributed Robotic Control System Based on a
Temporal Self-Organizing Neural Network

Guilherme A. Barreto, Student Member, IEEE, Aluizio F. R. Araújo, Christof Dücker, and Helge Ritter

Abstract—A distributed robot control system is proposed based
on a temporal self-organizing neural network, called competitive
and temporal Hebbian (CTH) network. The CTH network can
learn and recall complex trajectories by means of two sets of
synaptic weights, namely, competitive feedforward weights that
encode the individual states of the trajectory and Hebbian lateral
weights that encode the temporal order of trajectory states.
Complex trajectories contain repeated or shared states which
are responsible for ambiguities that occur during trajectory
reproduction. Temporal context information are used to resolve
such uncertainties. Furthermore, the CTH network saves memory
space by maintaining only a single copy of each repeated/shared
state of a trajectory and a redundancy mechanism improves the
robustness of the network against noise and faults. The distributed
control scheme is evaluated in point-to-point trajectory control
tasks using a PUMA 560 robot. The performance of the control
system is discussed and compared with other unsupervised and
supervised neural network approaches. We also discuss the issues
of stability and convergence of feedforward and lateral learning
schemes.

Index Terms—Distributed control, neural networks, robotics,
self-organization, stability analysis, temporal sequences.

I. INTRODUCTION

CONTROL of movements in both biological and artificial
systems demands the availability of severalsensorimotor

transformationsthat convert sensory signals into motor com-
mands that drive a set of muscles or robotic actuators. Such
transformations are highly nonlinear and it is very difficult to
express them in a closed analytical form. Artificial neural net-
works (ANNs) can be used to learn one or more sensorimotor
transformations required to perform a given robotic task without
precise knowledge about the parameters of the robot [1], [2].
Among the neural learning paradigms, self-organized (or unsu-
pervised) learning schemes have appealing properties that may
justify their use in robotics.

i) They do not need external supervision.
ii) Training is usually very fast, which is important for

real-time applications.
iii) Information is represented in a localized fashion, facili-

tating the interpretation of the results.

Manuscript received August 24, 2001; revised July 30, 2002. This work was
supported by FAPESP (a Brazilian research agency) through Ph.D. scholarship
98/12699-7 and Grant 00/12517-8.

G. A. Barreto and A. F. R. Araújo are with the Department of Electrical
Engineering, University of São Paulo (USP), São Carlos, Brazil (e-mail: gbar-
reto@sel.eesc.sc.usp.br; aluizioa@sel.eesc.sc.usp.br).

C. Dücker and H. Ritter are with the Neuroinformatics Group, Faculty of
Technology, University of Bielefeld, Bielefeld, Germany (e-mail: chrisd@
techfak.uni-bielefeld.de; helge@techfak.uni-bielefeld.de).

Digital Object Identifier 10.1109/TSMCC.2002.806067

Such properties can reduce considerably the computational load
involved in robot programming, which is an item responsible
for up to one-third of the total cost of implementation of an
industrial robotic system [3].

Many self-organizing neural networks (SONNs) have been
proposed in order to learn, for example, inverse kinematics and
dynamics [4]–[12]. This is accomplished by allowing the robot
arm to execute random movements within its workspace and
measuring the sensory consequences. This action-perception
cycle, known asPiaget’s circular reaction[13], forms a closed-
loop control system that allows accurate motion to be learned
by the network. What is learned is an associative mapping
between the randomly-generated motor actions and their
corresponding sensory effects. The learned mapping is then
used for control, i.e., every time the robot experiences a given
sensory pattern, it should provide the appropriate motor signal.

In the previous approach, successive robot movements are
supposed to be uncorrelated with each other, i.e., the order in
which the motion occurs is not important. However, an inherent
property of robotic tasks is that they have a well-defined sequen-
tial nature in the sense that a given robot arm should assume
specific configurations (states) successively in time along a pre-
defined path. This temporal characteristic is not incorporated
into the self-organizing learning procedures cited above, which
implies that only static sensorimotor transformations, such as in-
verse kinematics, can be learned by the network. In these cases,
the temporal order of the robotic task at hand is set in advance
by the neural network designer.

An alternative is to use temporal neural networks which can
directly cope with sequential aspects of the robotic task. For
a SONN to handletemporaldata, it must be given memory
about past states of the task being modeled. Currently, four
techniques have been used for this purpose [14]. The first
one addsshort-term memory(STM) mechanisms, such as
tapped delay linesand/orleaky integrators, to the input of the
SONN [15]. The second technique includes STM mechanisms
internally to the network in the activation and/or learning rules
[16], [17]. The third technique uses several temporal SONN’s
hierarchically, trying to capture spatiotemporal aspects of the
input sequence through successive refinements [18]. The fourth
approach uses a feedback loop to insert temporal information
into the SONN [19], [20].

Such temporal SONNs should learn to associate consecutive
states of a trajectory and store these state transitions for pos-
terior reproduction. Usually, for the purpose of recall, the net-
work receives the current state of the robot and responds with
the next one, until the trajectory is completely retrieved. This ap-
proach, known as theassociative chaining hypothesis[21] has

1094-6977/02$17.00 © 2002 IEEE



348 IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

been widely used by unsupervised as well as supervised neural
network models to model temporal characteristics of sensori-
motor control [22]–[31].

The main motivation for the present work is to emphasize the
feasibility of applying temporal SONNs to real-time, distributed
control of robotic manipulators. The contribution of the paper is
two-fold: i) It is the first one to report an implementation of a
controller for a robotic manipulator based on a temporal SONN,
and ii) the control task is designed to be performed in real-time
and in a distributed fashion. The design of the composite system
(neural network based controller distributed communication
tool) is facilitated by the separation of the neural network design
and the robot control task into two modules which are linked
through a distributed communication tool. The performance of
the unsupervised neural learning algorithm combined with a dis-
tributed communication tool is evaluated based on its ability to
learn and reproduce complex trajectories accurately and without
ambiguities. The resulting distributed neurocontrol system is
simple, very fast, and robust to noise and faults.

The remainder of the paper is organized as follows. In Sec-
tion II, the neural network is presented and its learning and re-
call procedures are discussed in details. In Section III, the robot
control platform and its main components are introduced. A dis-
tributed communication tool is also presented and its use in the
robotic task of interest is discussed. In Section IV, several tests
with the whole system (robot neural network based controller

distributed communication tool) are carried out. In Section V,
some features of the proposed distributed, real-time robotic con-
trol system are compared with other self-organizing as well as
supervised approaches. The paper is concluded in Section VI.

II. NEURAL NETWORK MODEL

It is assumed that the trajectories we are interested are finite
sequences of discrete points. However, most signals in nature
are analog and need to be discretized before simulation on dig-
ital computers. This is done by sampling at regular intervals and
adopting a system in which time proceeds by intervals of.
We will use the symbol to represent a particular point in time,
where . In this formulation, can
be considered to be the unit of measure for the quantity, and
thus, it is reasonable to omit the units and expresssimply as a
member of the set of integer numbers .

Then, one can define atrajectory as a finite set of state
vectors , , ,
grouped according to their order of occurrence in time, that is,

where is the length
of the sequence. Trajectories can be classified assimpleand
complex. In complex ones, an individual state can occur more
than once or it can be shared with other trajectories. We refer to
either repeated or shared elements of a trajectory asrecurrent
states. Simple trajectories are those without recurrent items.

Complex trajectories are responsible for ambiguities that
occur during the recall process, which are resolved through
additional contextual information. It is worth emphasizing
that the term context is used very generally here to mean any
secondary or additional source of information, derived from a
different sensory modality, a different input channel within the
same modality, or the temporal history of the input.

Fig. 1. Architecture of the temporal neural network. For simplicity, only some
lateral weights are shown.

A. Network Architecture

The architecture of the neural algorithm, calledCompetitive
and Temporal Hebbian(CTH) network, is shown in Fig. 1. This
two-layer network is inspired by Grossberg’s Outstar Avalanche
network [32] and Amari’s temporal associative memory model
[33].

The CTH network consists of a broadcasting input layer and
a competitive output layer, which carries out the processing.
The model has feedforward and lateral weights that play dis-
tinct roles in its dynamics. This architecture differs from those
of standard SONNs by possessing context units at the input and
delay lines at the output. The delay lines, however, are needed
only for training in order to learn unidirectional temporal tran-
sitions. The goal of the CTH network is to provide a spatiotem-
poral sequence of robot arm configurations (states) between a
starting and an ending position. The movement is executed by
an industrial manipulator comprising a set of joints individually
driven by actuators.

The network input vector comprises a sensorimotor vector
, a fixed context vector , and a time-

varying context vector . The sensory input
vector at time step is defined as

(1)

where is the Cartesian position of the end-effector at
time step and , where stands
for degrees-of-freedom, is a particular set of joint angles that
produces . Each defines the state of the robot arm at a
given instant of time. In this sense, one can say that the CTH
network is used to associate a sequence of Cartesian position

of the end-effector with a sequence of joint angles
needed to solve the robotic task at hand.

The fixed context is time-invariant and usually set to a partic-
ular state of the temporal sequence, the initial or final one being
the usual option. It is kept unchanged until the end of the current
sequence has been reached. This type of context acts as a kind
of global sequence identifier. Time-varying context is an STM
mechanism implemented astapped delay lines[14]. Thus

where , is an integer calledthe memory
depth. A suitable length of the time window is usually deter-
mined by trial-and-error (see Section V).



BARRETOet al.: DISTRIBUTED ROBOTIC CONTROL SYSTEM 349

B. Updating Feedforward Weights

The feedforward weight vector , connects
the input units to the output neuron, which is defined as

so that . At each time step, the current state
vector is compared with each feedforward weight vector in
terms of Euclidean distance as follows:

(2)

where is a diagonal matrix, calledprojection ma-
trix, whose elements are set to 0 or 1 [34]. The matrixis used
to select the appropriate input variable to be used to search for
the winner. For example, if the matrix is chosen as

...
...

...

where is an identity matrix with
, and only the vector influences the search for

the winner. No matter what values assumes, it will not con-
tribute to the computation of . A fixed context distance

and a time-varying context dis-
tance are also computed. While

is used to find the winners of the current competition,
and are used to solve ambiguities during trajec-

tory reproduction.
For accuracy in reproduction, every trajectory state should

be memorized for posterior recall in the correct temporal order.
That is, all states of a trajectory should be stored and recalled
in the correct order. Standard competitive networks, however,
tend to cluster the input states by similarity and may split the
trajectory in discontinuous segments, causing a jerky movement
of the robot arm. To overcome such a situation, the network “pe-
nalizes” each winning neuron by excluding it from subsequent
competitions and, hence, avoiding that it stores more than one
state of the trajectory being learned. This “exclusion” mecha-
nism is implemented through a function , called the re-
sponsibility function, that indicates if a neuron is already re-
sponsible for the storage of a trajectory state. If ,
neuron is excluded from subsequent competitions. If
, neuron is allowed to compete.
Furthermore, to save memory space, every time a recurrent

item occurs it should be encoded by the same neuron that stored
it the first time, otherwise many copies of this item will exist in
the network. However, according to the exclusion mechanism
implemented by the responsibility function, each neuron can
win a competition only once. Thus, for each occurrence of an
item in the sequence, a different neuron is chosen to store it.
A possible way of eliminating such a problem is through the
definition of a constant , calledsimilarity radius.
This constant establishes a neighborhood around eachin-
side which the weight vector can be considered sufficient
similar to . In other words, the exclusion mechanism avoids
that different states are learned by the same neuron, while the

similarity radius avoids that the same state be learned by dif-
ferent neurons.

Thus, if neuron has never won a competition (i.e.,
) or if the pattern stored in its weight vector is within the neigh-

borhood of the current input (i.e., ), then neuron
will be evaluated, for the purpose of competition, by only.
Otherwise, this distance is weighted by the responsibility func-
tion, excluding neuron from subsequent competitions. This
behavior can be formalized in terms of a function , called
choice function, as follows:

if or
otherwise. (3)

During training, we set in order to assign adifferent
neuron to eachdifferent(nonrecurrent) trajectory state. If a re-
peated item occurs, it will be mapped to the neuron that stored
its first occurrence. For the purpose of reproduction, the simi-
larity radius should assume higher values (i.e., ) to avoid
incorrect evaluation of (3) resulting from measurement noise in
the sensory vector.

The output neurons are then ranked as follows:

(4)

where is the number of output neurons, and ,
is the index of the th neuron closest to .

We consider neurons, ,
, as the winners of the current competition which

represents the current state vector and its context.
The activation values decay linearly from a maximum value

for , to a minimum for , as
follows:

for

for
(5)

where and are user-defined. For , the activations
are set to , for all . The responsibility function
is then updated as follows:

(6)

where the constant is called theexclusion parameter. For
, we set , for all . Finally, the weight vectors
are adjusted:

(7)

(8)

(9)

where is the learning rate. For , is ini-
tialized with random numbers between 0 and 1. Similar versions
of may exist at the weight vectors of neurons
winners because , . The degree of simi-
larity of these copies with is determined by the position of
the neuron in the ranking shown in (4), which is reflected in the
activation pattern in (5). The reason for the existence of several
copies of a trajectory state to provide the CTH network with
both tolerance to faults and noise.



350 IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

C. Updating Lateral Weights

A set of lateral weights ,
encodes the temporal order of the trajectory

states using a simple Hebbian learning rule to associate the
winner of the previous competition with the winner of the
current competition:

if
otherwise

(10)

where is a gain parameter. Through (10), the network
“looks” backward one time step to establish a causal link cor-
responding to the temporal transition between two consecutive
trajectory states 1 . This transition is encoded in
the lateral weight connecting the neurons associated with the ac-
tivation pair , . Successive application
of (10) leads to the encoding of the temporal order of the trajec-
tory. It is worth noting that (10) learns the temporal order of the
trajectory states, but does not memorize the duration between
states. Initially, for all , indicating absence of
temporal associations at the beginning of the training.

A lateral connection is updated only once, avoiding
the formation ofbiased transitions. An incremental adjustment
of a lateral weight associated with a recurrent state would even-
tually force this connection to assume high values. A strong lat-
eral connection wouldbias the recall process by favoring the
transition it encodes, even if the context information suggests
the use of another transition.

D. Stability of Feedforward and Lateral Learning

Feedforward Learning:Equation (7) can be rewritten as

Thus, the weight vector can be modified such that its pre-
vious value is retained by a factor of ( ), whereas the
current trajectory state affects the weight by a factor of

. If we set , we get for the win-
ning neuron , where we also used the fact that
as defined by (5).

Thus, the entire trajectory is stored, state-by-state, in a single
pass of its states and their corresponding contextual information.
In other words, there is no need to present a trajectory to the
network more than once. This strategy is referred to asone-shot
learning(OSL) and constitutes an important feature of the CTH
network. By using the OSL strategy, convergence time is
substantially reduced compared to that of supervised networks.
OSL also guarantees high accuracy during trajectory recall.

In many situations, however, the OSL strategy may lead to
problems of memory storage and retrieval [35]. This is partic-
ularly true for trajectories having many states (high sampling
rate). For these cases, the trajectory states have to be clustered
first. This can be easily done through the CTH network if we
set . In addition, we have to set to
avoid exclusion of neurons and temporal order learning during
the clustering stage. Once the clustering stage is over, we use

, and , thus proceeding with the OSL
and lateral order learning schemes as defined originally for the

1This is the reason we useC (t � 1), rather thanC (t) in (9).

Fig. 2. Closed-loop neurocontrol scheme for autonomous trajectory
reproduction.

CTH network. Detailed discussion on clustering properties of
competitive networks and theoretical analysis of their conver-
gence process can be found in [36].

Lateral Learning: The stability of temporal order learning
and recall through time-dependent Hebbian learning rules, such
as that in (10), has been studied in-depth by [33] and [37]. In
particular, Herz [37] has achieved an important result: the recall
process of certain delay networks is governed by a Lyapunov
(or “energy”) function. The corresponding insight is that the
time evolution during recall (i.e., the sequence of retrieved state
transitions) can thus be understood as a downhill march in an
abstract spatiotemporal energy landscape.

E. Recall of a Stored Trajectory

Once a trajectory is learned, it can be retrieved either from its
initial or any intermediate state. The trajectory recall process is
a closed-loop control scheme (see Fig. 2) which comprises five
steps:

1) recall initiation;
2) computation of neuronal activations;
3) computation of neuronal outputs;
4) delivery of control signals to the robot;
5) determination of feedback sensory signals.

For recall purpose, the parameteris always set to 1.
1) Recall Initiation: To initiate reproduction, any trajectory

state can be presented to the network by the robot operator
( in Fig. 2). The fixed context is usually set to the target
Cartesian position of the end-effector and the initial values of
the temporal context are set equal to the triggering state. For

, the network dynamics will then evolves autonomously to
recall the part of the stored trajectory that follows the triggering
state.

2) Computation of Activation:For each input state, the ac-
tivation of the winning neuron, , should be computed ac-
cording to (5). The feedforward weight vector of the winner
is the closest to the current input state.

3) Computation of Output:The winner—the only output
neuron with —will then trigger the neuron whose
weight vector stored the successor of the current input state.
This is possible because of the state transition learned during
the training phase and encoded by a lateral weight connecting
these neurons. Thus, the output equation is defined as follows:

(11)

where and
. The function is chosen so that



BARRETOet al.: DISTRIBUTED ROBOTIC CONTROL SYSTEM 351

and . For , the output values are set to
, for all .

It is worth noting that for a simple trajectory, the third factor
on the right-hand side of (11) alone will correctly indicate the
neuron that stored the next state of the trajectory. For a complex
one, additional disambiguating information is required, since
the third factor will produce the same value of for all can-
didates for the next state. The ambiguity is resolved by the first
and second factors on the right-hand side of (11); the candidate
neuron with the highest values for the first and second factors
or, equivalently, the one with the lowest values for and

is considered the correct one to be chosen.
4) Delivery of Control Signals:The control signal to be de-

livered to the robot is computed from the weight vector of the
neuron with highest value of and the matrix
as follows:

(12)

where . Note that outputs only
the joint angles associated with .

5) Determination of Feedback Signals:When the robot arm
attains its new position, a new sensory vectoris formed with
current sensor readings and presented to the CTH network.
Thus, sensory signals provide feedback information about the
current state of the arm after the execution of a given motor
action. The steps 2–5 continue until the end of the stored
trajectory.

It is worth noting that, during the recall process, if the network
receives as input a state belonging to the stored trajectory, it
searches for another stored state, such that the latter forms a
state transition together with the input state. This is equivalent to
saying that the network “looks” forward one time step, in order
to output the stored pattern that succeeds in time the current one.
In summary, during learning the network has apast-oriented
behavior, whilst during recall the network has afuture-oriented
(one-step ahead) behavior.

III. ROBOTIC PLATFORM

In the current implementation, we used the PUMA 560 robot,
a manipulator with 6 degrees of freedom connected to the Uni-
mation Controller (Mark III) which itself contains several con-
trollers. The separate servo controllers, one for each joint, are
driven by a main controller LSI-11/73 CPU. Large parts of the
original PUMA controller software were replaced and a VME-
based SUN Sparcsystem 4/370 workstation was employed to
directly control the robot in real-time via a high speed commu-
nication link. In addition, we developed a simple user-interface
based on a distributed communication tool that allows the robot
to be controlled remotely from any personal computer attached
to a local area network. Details are given next.

A. Hardware and Software for Low-Level Robot Control

Neural-based control algorithms for a robot require the capa-
bility to quickly process and respond to high bandwidth sensory
input coming from, for example, a video camera. The design of
a distributed control system has to overcome the limitations of

current commercially available robot controllers, such as lack
of computational power, lack of expandability or compatibility
to other systems, and not much transparency of their program-
ming languages or operating systems.

In industrial applications the robot is programmed in an in-
terpreted robot language VAL II. The VAL II software was re-
placed, since the main controller LSI-11 is not capable of han-
dling high bandwidth sensory input itself. Furthermore, VAL
II does not support flexible control by an auxiliary computer.
To achieve a tight real-time control by the Unix workstation it
was installed the software packageRobotControlC Library and
Real-timeControl Interface (RCCL/RCI) [38]. This package al-
lows the user to issue robot motion requests from a high level
control program (“planning task” which is written and executed
as an ANSI C program) to the trajectory level (“control task”)
via shared memory communication. The control task is exe-
cuted periodically at a high priority (kernel mode) and is re-
sponsible for reading feedback data, generating intermediate
joint set-points and carrying out a “watchdog” function. During
each control cycle (typically 20 ms), a command package is
sent to the robot controller via the parallel port. The receiving
main controller LSI-11 CPU is reprogrammed to dispatch com-
mands to the joint servos, collect feedback data from them and
perform elementary safety checks. At power-up time the re-
programming software is downloaded and started by the host
computer through a serial line, emulating the controller console.
The software then resides at the controller and can be addressed
through the parallel port.

This robot control scheme was proposed by Walter and
Schulten [8]. The present work introduces some new ideas and
improvements. Specifically, a user-friendly interface was devel-
oped to facilitate robot motion requests and reading of feedback
data. Instead of programming the planning and control levels
using the C-language functions of the RCCL/RCI package
(which demands high degree of expertise), the user includes
in his/her C code for the neural network simple function calls,
which commands the robot in a transparent way. Moreover,
the robot control (motion requests) can be performed remotely,
i.e., the neural network can control the robot from any personal
computer connected to the same local area network.

B. Tool for Distributed Processing

Usually, in the fields of artificial intelligence, pattern recog-
nition and robotics, different modules designed to execute a spe-
cific task must be integrated. Each of these modules has its own
data structure and analyzes a certain type of pattern. An effi-
cient communication among different modules is crucial to the
correct functioning of the distributed control system as a whole.
For this purpose we use a new communication framework called
Distributed Applications Communication System(DACS), de-
veloped by Finket al.[39]. The DACS communication tool was
designed to integrate heterogeneous pattern analysis systems
that handles different types of data structures. Its functioning is
based on theclient-serverarchitecture: a central computer (the
server) manages the resources of the network system, supplying
other machines (the clients) with the routes for the requested re-
source. The DACS tool provides a simple set of functions and
libraries for applications to communicate with remote modules.



352 IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 3. Interactions during a synchronous function call.

The client computers as well as the server run locally, in back-
ground, a program called DACS-daemon, which is responsible
for encoding/decoding the data and for correct addressing of
the requests. Each module (application) has to register with the
system under a unique name that is immediately passed to a
name server and enables other modules to address it. The DACS
library and daemons are realized as several parallel tasks using
threads2 [40]. To avoid that faulty communication links block
the whole system or cause deadlocks, separate threads are set up
for each module and each connection to another module. Local
connections are created when an application registers with the
daemon to last until the application unregisters. Network con-
nections are set up dynamically depending on the messages to
be sent. Each message has to pass a central routing thread to de-
termine the appropriate connection to be used. This introduces
a potential bottleneck, however, only simple operations have to
be carried out by this thread.

To access a particular module, a client performs aremote pro-
cedure call(RPC): a message requesting the use of that module.
In the case of acceptance, a bidirectional synchronous RPC is
established. This type of RPC blocks the requesting process
(client) until a feedback signal from the server arrives, while
an asynchronous one does not. To allow transparent communi-
cation between modules, C language-dependent data structures
used to implement the CTH network are transformed by DACS
to a typed and flexibly structure calledNetwork Data Repre-
sentation(NDR) within the application-attached communica-
tion front end. This transformation avoid problems with data
type inconsistency arising from unidentical data interface defi-
nition between service requester and service provider. The data
transformations can either be achieved using available routines
to generate primitive NDR-objects directly or by automatically
generating conversion functions from data type definitions.

In this paper, the client application is the CTH network that
delivers, by means of a synchronous RPC, control signals (joint
angles) requesting the robot to move to a certain position. The
server processes such an RPC, encodes it to the RCCL/RCI
syntax, and sends the request to the RCCL/RCI application,
which sends the control signals to the robot. After the motion is

2In programming, a part of a program that can execute independently of other
parts.

completed, the new position of the robot is read by the sensors
and the way back is performed. That is, it goes from the robot
to RCCL/RCI application, from RCCL/RCI to the server, which
translates the feedback signal to the neural network syntax, and
from the server to the neural network via DACS. The entire
process is transparent for the neural network user; the only thing
he/she has to know is the DACS syntax to implement the RPC.

Details about the interaction between the CTH network
(client) and the RCCL/RCI package (server) during a syn-
chronous RPC through DACS is shown in Fig. 3. The
application calledrobot provides a function calledmove. In
the machinecaesar, the applicationnet resides, only knowing
that there is a service provided by the functionmoveavailable
anywhere in the system. The applications and the functions are
already registered in the name server at this stage. Seven steps
are performed by DACS to carry out a synchronous remote
procedure call to functionmovefrom functionnet:

1) Thenetapplication sends a message to the local DACS-
daemon, addressing it tomove. This message is tagged as
type “function” which affects the resolving of the address.

2) Using an usual RPC to the name server, the DACS-
daemon determines where the functionmoveis located.
The result of the name server request is the full address
of the application that registered the functionmove—
robot@geppettoin this case.

3) The DACS-daemon oncaesarsends the message to the
DACS-daemon ongeppetto.

4) The applicationrobot is found in the table of local appli-
cations, so the message is delivered to the application pro-
viding the functionmove. The DACS library decodes the
address and the arguments and calls the appropriate func-
tion. The result is encoded and addressed to the sender of
the message—herenet@caesar.

5) The result is delivered to the local DACS-daemon on the
machinegepetto.

6) This daemon delivers the message directly to the daemon
on machinecaesar. Note that at this point no call to the
name server is necessary since the address is already
known.

7) Finally, the daemon delivers the message locally to the
net application where the library decodes the result and
returns it to the caller.



BARRETOet al.: DISTRIBUTED ROBOTIC CONTROL SYSTEM 353

IV. TESTSWITH THE DISTRIBUTED CONTROL SYSTEM

The CTH network presented in this paper was previously
evaluated in robotic tasks through simulations [30]. Simulations
have the same advantages ofoff-line robot programming and
constitute an important step toward the complete evaluation of
a robot control system. This is particularly true when the imple-
mentation in a real robot is costly, dangerous to humans, or can
damage the robot hardware if the user is not an expert. However,
simulation environments are only an approximation of reality.
Thus, the ultimate goal of a neurocontrol algorithm developed
under simulated conditions is to be implemented as a controller
of a real robot. The PUMA 560 robot used in the tests belongs
to the Laboratory of Robotics of the Neuroinformatics Group at
the University of Bielefeld, Bielefeld, Germany.

Simple and complex trajectories were generated by moving
the robot arm through specific pathways within its workspace,
sampling at regular intervals and recording the corresponding
joint angles and Cartesian positions of the end-effector. These
trajectories were then used to train the network. It is worth
noting that the network training procedure could be carried out
on the fly, i.e., while the trajectories are being generated. It is
also possible for the robot operator him/herself to specify a
sequence of angular positions that obeys the range of values
imposed to the joint angles, without actually moving the robot
and then to compute the corresponding Cartesian positions
of the end-effector through the forward kinematic function
available in the RCCL/RCI package.

The ranges of values for the joint angles are the following (in
degrees):

• ;
• ;
• ;
• ;
• ;
• .

The fixed context is always set to the final Cartesian position of
the end-effector for a given trajectory. The temporal context has
depth , i.e., and its initial
value is , where is the triggering
state. The values of the other parameters are the following:

(training), (recall), , ,
, , and .

Two trajectories, a simple and a complex one were presented
to the CTH network only once (since ), one after the other.
After a trajectory is learned it can be retrieved, in a state-by-state
basis, through the scheme depicted in Fig. 2. Every angular posi-
tion achieved by the robot is measured through optical encoders
mounted at each joint and then sent to the network input to con-
tinue the recall process. This process is repeated until the end
of the trajectory has been reached. A polynomial is fitted to the
sequence of retrieved joint angles in order to smooth the robot
movements.

The measurement of angular positions by the optical en-
coders is inherently inaccurate, depending basically on the
sensor calibration and the end-effector velocity. The faster is
the end-effector, the higher is the inaccuracy due to dynamic
coupling between arm segments. For all the tests performed
in this paper, the end-effector velocity was set to 0.5 m/s,

TABLE I
STORED AND MEASURED(IN ITALIC) VALUES OF THEJOINT ANGLES FOR

A SIMPLE TRAJECTORY. MSE VALUES FOR THEJOINT ANGLES ARE

GIVEN IN THE LAST LINE

Fig. 4. Learning (upper row) and recall (lower row) of the states a trajectory.
White circles mark the positions of the end-effector.

which is a value sufficient to move the arm fast enough and
to produce accurate measures of the joint angles. The errors
between stored and measured joint angles are computed by

, where and
are the measured and stored values of theth joint angle,
respectively.

In the first test, it is shown which neuron stored a partic-
ular state of a trajectory and its order in time during trajec-
tory reproduction. For this test, it was used a simple trajectory
with states, approximately drawing a straight line. For
simplicity, since there is no recurrent state, a network of only

neurons is trained with . The upper row of
Fig. 4 shows each neuronof the network, numbered from left
to right and the trajectory state each one stored. The lower row
of Fig. 4 shows the sequence of active neurons during a correct
trajectory reproduction. Table I shows the numerical values of
the joint angles stored in the CTH network for the trajectory in
Fig. 4 and the values measured by the optical encoders which
were used as feedback signals during trajectory reproduction.

For the next test, we set and increased the number
of neurons to . Fig. 5(a) shows a sequence of arm po-
sitions approximately describing an eight-figure trajectory, to-
gether with the index of the neuron that stored the position and
the corresponding instant of occurrence of that position. This
trajectory has seven states with an intermediate state occurring



354 IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

Fig. 5. Eight-figure trajectory performed by the PUMA 560 robot. The arrows
represent state transitions.

twice ( and ) but in different temporal context.
Eight-figure trajectories, due to the existence of recurrent states,
have been widely used as benchmark in temporal sequence re-
call to demonstrate the role of temporal context information.
Table II shows the stored and measured values of the joint an-
gles obtained for the eight-figure trajectory.

TABLE II
STORED AND MEASURED (IN ITALIC) VALUES OF THE JOINT ANGLES

FOR AN EIGHT-FIGURE CLOSED TRAJECTORY. MSE VALUES FOR THE

JOINT ANGLES ARE GIVEN IN THE LAST LINE

Fig. 6. Resolving ambiguities during recall of complex trajectory.

Fig. 6 illustrates how (11) treats ambiguities. No matter what
branch of the figure-eight the robot arm is currently executing,
when it arrives at the crossing point ( and ), it has
to decide between one of two possible directions to follow. This
ambiguity is resolved by the time-varying context. The states

and are equal, but they occur in different temporal
contexts. During training both states were stored by neuron

(Fig. 6). During recall, when the robot arm reaches the state
, the network has to decide which is the next state (control

signal) to be sent to the robot. Following the lateral connections
in Fig. 6, the candidates for the next trajectory state are stored
in the weight vectors of neurons and . Since the
repeated states belong to the same trajectory, the fixed context
is the same for the two neurons. Only, the time-varying context
contains the information (past states) that can extinguish the am-
biguity: . This information matches
exactly with that in the lower portion of the weight vector ,
i.e., . Hence, , implying that

. Thus, neuron is chosen and the control signal
is extracted from as shown in (12).

Table III shows typical results for reproduction of the eight-
figure trajectory obtained for different situations. The second
line shows the first winners, i.e., those labeled as in (4), for



BARRETOet al.: DISTRIBUTED ROBOTIC CONTROL SYSTEM 355

TABLE III
WINNING NEURONSDURING TRAINING AND RECALL. (RECALL-1) THE

TEMPORAL CONTEXT IS TURNED OFF. (RECALL-2) NEURONAL FAULTS ARE

SIMULATED . (RECALL-3) NOISE IS ADDED TO THE INPUT

the seven time steps of the stored the trajectory during training.
The third line (recall-1) shows those neurons activated during
the reproduction phase disregarding the temporal context infor-
mation. It can be noted that errors occurred since the active neu-
rons during training are different from those active during re-
call. The consequence of an error is that the robot arm cannot
go through the two sides of the eight-figure trajectory, being
trapped in one side only, as shown in Fig. 5(b)

The next two tests illustrate the fault and noise tolerance of
the CTH network when trained with . The fourth line
(recall-2) shows the neurons activated after simulating the col-
lapse of all neurons. Since , the responsibility for the
reproduction of the trajectory is assumed by the second win-
ners, i.e., those neurons labeled asduring training. Since

, the trajectory is reproduced with
an error ( ) that is slightly higher than that
obtained by summing up the last line of Table II and averaging
over the 6 joints ( ). The
fifth line (recall-3) shows the neurons activated when simulated
Gaussian white noise (zero mean, variance=0.1) is added to the
network input. The additional noise forces the network to select
sometimes the second winners rather than the first winners as
shown in Table III for and . This occurs because
the second winners are now closer to thenoisyinput states than
the first winners, in an Euclidean distance sense. Depending on
the magnitude of the noise, incorrect evaluation of the neurons
can occur, impairing the trajectory reproduction, however such
a situation was not observed in the experiments. This robustness
property of the CTH network is equivalent to that of the SOM
model [36]. The main difference is that the neurons in the CTH
network do not need to be arranged in a fixed lattice with pre-
defined neighborhood relationships.

V. DISCUSSION

The CTH network was applied to the learning of robot
trajectories, a common problem in industrial scenarios. Usu-
ally, a trajectory is “teached” to the robot by the so-called
walk-throughmethod, in which an operator guides the robot
end-effector through the sequence of desired positions [41].
These positions and their temporal order are then stored in the
controller memory (look-up table) for posterior recall by the op-
erator him/herself. This method is time-consuming and costly
because the robot is out-of-production during the trajectory
learning process. Furthermore, as the trajectory being learned
becomes more and more complex and/or several trajectories

have to be learned, the robot operator may experience difficul-
ties in setting the temporal order of the states of the trajectories
and resolving all potential ambiguities due to recurrent trajec-
tory states. Thus, any trajectory learning algorithm that reduces
the time the robot takes off-line is welcome. The CTH network
described in this paper was designed with this goal in mind
since the learning process is very fast, can be carried out in an
online fashion and the resolution of ambiguities requires min-
imal human supervision. In addition, the CTH network exhibits
some tolerance to neuronal failure and to noise, properties that
are not present in the conventional (nonadaptive) look-up table
methods [42]. These two aspects are particular important if the
proposed method is to be implemented in hardware.

It is important to note that the CHT network acts basically
as atrajectory planneror high-level trajectory controller, set-
ting the reference values for the low-level joint controllers at
each time step. In this paper, the joint controllers are conven-
tional PID controllers, but other control methods, such as fuzzy
or neural, could be equally used. Thus, the CHT network can
be applied independently of the type of low-level controllers.
The feedback pathway shown in Fig. 2 allows the CTH network
to work autonomously, monitoring the trajectory reproduction
process in a step-by-step basis. This is important for safety pur-
poses since a trajectory only continues to be reproduced is the
feedback pathway exists.

Thus, if any problem occurs during the execution of the re-
quired motion by the robot, such collision with an obstacle or
the joints reach limit values, the feedback pathway can be in-
terrupted and the reproduction is automatically stopped. The
conventional walk-through method does not possess the feed-
back pathway. In this case, all the trajectory states are sent to
a memory buffer and executed in batch-mode. If any problem
occurs, one has to wait for the execution of the whole trajec-
tory in order to take a decision or to turn-off the robot power.
From the exposed, we can say that the neurocontrol scheme
shown in Fig. 2 is a kind ofself-monitored trajectory reproduc-
tion approach.

Generalized Versus Specialized Inverse Modeling and Con-
trol: It can be said that we have proposed a neurocontrol system
which implements aspecialized inverse modeling and control
scheme[1] in the sense that the CTH network is used to train the
network to operate in specific (localized) regions of the robot
workspace defined by the learned trajectories. Other real-time
implementations of self-organizing architectures implement a
generalizedinverse modeling and control scheme since they try
to learn sensorimotor mappings globally [4], [8]–[10].

The success of the generalized method depends on the ability
of the neural network to generalize correctly to respond to inputs
it has not been trained on. Thus, the training samples will have to
cover the input space of the plant and hence this procedure is not
veryefficientsince thenetworkwill have to learn the responsesof
the plant over a wide range than what may be actually necessary.
As pointed out by Prabhu and Garg [1] the specialized scheme
produces more accurate positioning results and is suitable for
on-line learning as we have shown in this paper.

Furthermore, none of the generalized real-time learning
schemes cited above take into account temporal aspects of
the robotic task. As far as we know, our approach is the first



356 IEEE TRANSACTIONS ON SYSTEMS, MAN and CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 4, NOVEMBER 2002

real-time implementation of a specialized inverse modeling and
control system that automatically takes into account sequential
aspects of the robotic task. Several supervised approaches have
been proposed and simulated [22], [23], [28], but they are
not suitable for online learning since they require a very long
training process.

Comparison With Other Temporal SONNs for Robotics:We
have noted that few temporal SONNs have been applied to
control of manipulators [25], [29], [31]. The network by
Althöfer and Bugmann [25] cannot handle trajectories with
recurrent states, whereas the model by Barreto and Araújo [29]
can only deal with trajectories with shared states. None of them
can learn and recall trajectories that contain both repeated and
shared states.

Another network by Barreto and Araújo [31] is able to handle
recurrent trajectory states but uses memory space inefficiently
since every time a recurrent state occur it is stored by a neuron
different from the one that stored this state previously. The
similarity radius mechanism allows the CTH network to save
memory space by maintaining only a single copy of each
recurrent state of a trajectory. For example, to store the seven
states of the eight-figure trajectory, the network by Barreto
and Araújo [31] requires seven neurons, whereas the CTH
network requires only five neurons, as shown in Fig. 6, since
the recurrent states are stored only once. The larger the number
of occurrences of a given state of the trajectory, the larger the
savings in memory use.

Selection of CTH Network Parameters:The CTH network
has a relatively high number of nine parameters, but they are
fairly easy to select. If one always set , the
other parameters can be chosen as follows:

1) A value or 1000 suffices to exclude neurons
from competition.

2) The simulations in [30] suggest or 2.
3) For these values of , the value results in

acceptable accuracy in the case of faults.
4) The length of the local context is chosen on a trial-and-

error basis, but it can be made adaptive (see [21]). The
hint is to start with and increase this value if the
network is unable to resolve possible ambiguities.

5) The number of output neurons must guarantee the
storage of original trajectories and the associated
redundant sequences. If is known beforehand,

, where is the number of components of
the sequence.

If is unknown, should be given initially a reasonably high
value. If this number is eventually found to be insufficient, a
constructive technique should be used to add new neurons to
the network [43].

Why Not to Use Other Distributed Communication
Tools?: There are several tools available that provide useful
communication primitives for distributed processing [44].
Nevertheless, some inconveniences in each of the most popular
ones motivated the implementation of the DACS tool which is
more flexible and general than the other tools. For example,
the ONC RPC [45] tool allows synchronous calls in a typical
client-server concept with well structured data types that have

to be known at compile time. The necessary knowledge of the
destination machine when getting the client handle makes it
hard to distribute several modules in a dynamical way [45]

Another possibility is to use thePVM [46], which is a well-
known standard system used to parallelize complex algorithms.
However, the PVM is a totally distributed system without a cen-
tralized instance of a service to keep track of the system con-
figuration which results in an enhanced overhead during recon-
figuration. Furthermore, the facilities to exchange data between
heterogeneous architectures are very basic. Several other tools
have been investigated by Finket al., [39], but due to reasons
similar to the ones mentioned above, they were not selected to
be used in the distributed system proposed in this paper.

VI. CONCLUSIONS

In this paper, we demonstrated the feasibility of using a tem-
poral self-organizing neural network to real-time control an in-
dustrial robot. The implementation of the control scheme is fa-
cilitated by the separation of the network design and the robot
control task into two distinct modules which are linked through
a distributed communication tool. The resulting distributed neu-
rocontrol system is simple, fast and robust to noise and faults.

We believe that the proposed distributed control system is
flexibly enough to be further improved and applied to standard
industrial robotic manufacturing systems, assembly lines, spray
painting, selective soldering, point soldering, etc.

REFERENCES

[1] S. M. Prabhu and D. P. Garg, “Artificial neural network based robot
control: An overview,”J. Intell. Robot. Syst., vol. 15, pp. 333–365, 1996.

[2] S. N. Balakrishnan and R. D. Weil, “Neurocontrol: A literature survey,”
Math. Comput. Modeling, vol. 23, no. 1–2, pp. 101–117, 1996.

[3] J. Heikkonen and P. Koikkalainen, “Self-organization and autonomous
robots,” in Neural Systems for Robotics, O. Omidvar and P. van der
Smagt, Eds. New York: Academic, 1997, pp. 297–337.

[4] M. Kuperstein and J. Rubistein, “Implementation of an adaptive neural
controller for sensory-motor coordination,”IEEE Contr. Syst. Mag., vol.
9, no. 3, pp. 25–30, 1989.

[5] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimensional
neural net for learning visuomotor coordination of a robot arm,”IEEE
Trans. Neural Networks, vol. 1, pp. 131–136, Jan. 1990.

[6] M. Kuperstein, “Infant neural controller for adaptive sensory-motor co-
ordination,”Neural Networks, vol. 4, pp. 131–145, 1991.

[7] H. Ritter, T. Martinetz, and K. Schulten,Neural Computation
and Self-Organizing Maps: An Introduction, Addison-Wesley,
Ed. Reading, MA, 1992.

[8] J. A. Walter and K. J. Schulten, “Implementation of self-organizing
networks for visuo-motor control of an industrial robot,”IEEE Trans.
Neural Networks, vol. 4, pp. 86–95, Jan. 1993.

[9] T. Hesselroth, K. Sarkar, P. van der Smagt, and K. Schulten, “Neural
network control of a pneumatic robot arm,”IEEE Trans. Syst., Man,
Cybern., vol. 24, pp. 28–38, Jan. 1994.

[10] M. Jones and D. Vernon, “Unsing neural networks to learn hand-eye
co-ordination,”Neural Comput. Applicat., vol. 2, pp. 2–12, 1994.

[11] P. Morasso and V. Sanguineti, “Self-organizing body schema for motor
planning,”J. Motor Behavior, vol. 27, no. 1, pp. 52–66, 1995.

[12] J. L. Buessler, R. Kara, P. Wira, H. Kihl, and J. P. Urban, “Multiple self-
organizing maps to facilitate the learning of visuo-motor correlations ,”
Proc. IEEE Int. Conf. Syst., Man, Cybern., vol. III, pp. 470–475, 1999.

[13] J. Piaget,The Origin of Intelligence in Children Paris, France, 1963.
[14] G. A. Barreto and A. F. R. Araújo, “Time in self-organizing maps: An

overview of models,”Int. J. Comput. Res., vol. 10, no. 2, pp. 139–179,
2001.

[15] J. Kangas, “Phoneme recognition using time-dependent versions of
self-organizing maps,”Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., pp. 101–104, 1991.



BARRETOet al.: DISTRIBUTED ROBOTIC CONTROL SYSTEM 357

[16] G. J. Chappell and J. G. Taylor, “The temporal Kohonen map,”Neural
Networks, vol. 6, no. 3, pp. 441–445, 1993.

[17] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski, “Time series pre-
diction using recurrent SOM with local linear models,”Int. J. Knowl-
edge-Based Intell. Eng. Syst., vol. 2, no. 1, pp. 60–68, 1998.

[18] O. Carpinteiro, “A hierarchical self-organizing map model for sequence
recognition,”Neural Processing Lett., vol. 9, no. 3, pp. 209–220, 1999.

[19] T. Voegtlin, “Context quantization and contextual self-organizing
maps,” inProc. IEEE-INNS-ENNS Int. Joint Conf. Neural Networks,
vol. 6, Como, Italy, 2000, pp. 20–25.

[20] K. Horio and T. Yamakawa, “Feedback self-organizing map and its ap-
plication to spatio-temporal pattern classification,”Int. Comput. Intell.
Applicat., vol. 1, no. 1, pp. 1–18, 2001.

[21] D.-L. Wang and B. Yuwono, “Anticipation-based temporal pattern gen-
eration,” IEEE Trans. Syst., Man Cybern., vol. 25, no. 4, pp. 615–628,
1995.

[22] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” inProc. 8th Annu. Conf. Cognitive Sci. Soc.,
Amherst, MA, 1986, pp. 531–546.

[23] L. Massone and E. Bizzi, “A neural network model for limb trajectory
formation,”Biolog. Cybern., vol. 61, pp. 417–425, 1989.

[24] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning
with a distal teacher,”Cogn. Sci., vol. 16, pp. 307–354, 1992.

[25] K. Althöfer and G. Bugmann, “Planning and learning goal-directed se-
quences of robot arm movements,” inProc. Int. Conf. Artificial Neural
Networks, Paris, France, 1995, pp. 449–454.

[26] G. Bugmann, K. L. Koay, N. Barlow, M. Phillips, and D. Rodney, “Stable
encoding of robot trajectories using normalized radial basis functions:
Application to an autonomous wheelchair,” inProc. Int. Symp. Robotics,
Birmingham, U.K., 1998, pp. 232–235.

[27] A. F. R. Araújo and M. Vieira, “Associative memory used for trajectory
generation and inverse kinematics problem,” inProc. IEEE Int. Joint
Conf. Neural Networks, Anchorage, AK, 1998, pp. 2052–2057.

[28] A. F. R. Araújo and H. D’Arbo, “Partially recurrent neural network to
perform trajectory planning, inverse kinematics and inverse dynamics,”
in Proc. IEEE Int. Conf. Syst., Man, Cybern., San Diego, CA, 1998, pp.
126–133.

[29] G. A. Barreto and A. F. R. Araújo, “Unsupervised learning and recall
of temporal sequences: An application to robotics,”Int. J. Neural Syst.,
vol. 9, no. 3, pp. 235–242, 1999.

[30] A. F. R. Araújo and G. A. Barreto, “Context in temporal sequence pro-
cessing: A self-organizing approach and its application to robotics,”
IEEE Trans. Neural Networks, vol. 13, pp. 45–57, Jan. 2002.

[31] , “A self-organizing context-based approach to tracking of multiple
robot trajectories,”Appl. Intell., vol. 17, no. 1, pp. 101–119, 2002.

[32] S. Grossberg, “Some networks that can learn, remember and reproduce
any number of complicated space-time patterns, I,”J. Math. Mechan.,
vol. 19, pp. 53–91, 1969.

[33] S. Amari, “Learning patterns and pattern sequences by self-organizing
nets of threshold elements,”IEEE Trans. Comput., vol. C-21, pp.
1197–1206, Nov. 1972.

[34] J. Walter and H. Ritter, “Rapid learning with parametrized self-orga-
nizing maps,”Neurocomput., vol. 12, pp. 131–153, 1996.

[35] W. K. Estes,Classification and Cognition. New York: Oxford Univ.
Press, 1994.

[36] T. Kohonen,Self-Organizing Maps, 2nd ed. Berlin-Heidelberg, Ger-
many: Springer-Verlag, 1997.

[37] A. V. M. Herz, “Spatiotemporal association in neural networks,” in
The Handbook of Brain Theory and Neural Networks, M. A. Arbib,
Ed. Cambridge, MA: MIT Press, 1995, pp. 902–905.

[38] J. Lloyd, M. Parker, and R. McClain, “Extending the RCCL program-
ming environment to multiple robots and processors,” inProc. IEEE
Conf. Robotics Automat., Philadelphia, PA, 1988, pp. 465–469.

[39] G. A. Fink, N. Jungclaus, H. Ritter, and G. Sagerer, “A communication
framework for heterogeneous distributed pattern analysis,” inProc.
IEEE Int. Conf. Algorithms Applicat. Parallel Process., 1995, pp.
881–890.

[40] G. Coulouris and J. Dollimore,Distributed Systems—Concepts and De-
sign, 2nd ed. Reading, MA: Addison-Wesley, 1994.

[41] K. Fu, R. Gonzalez, and C. Lee,Robotics: Control, Sensing, Vision and
Intelligence. New York: McGraw-Hill, 1987.

[42] M. H. Raibert and B. K. P. Horn, “Manipulator control using the config-
uration space method,”Indust. Robot, vol. 5, pp. 69–73, 1978.

[43] B. Fritzke, “Growing cell structures—A self-organizing network for un-
supervised and supervised learning,”Neural Networks, vol. 7, no. 9, pp.
1441–1460, 1994.

[44] D. Y. Cheng, “A survey of parallel programming languages and tools,”
NASA Ames Res. Cent., Moffett Field, CA, 1993.

[45] Network Programming Guide. Mountain View, CA: Sun Microsyst.,
1990.

[46] V. S. Sunderam, “A framework for parallel distributed computing,”Con-
currency: Practice Experience, vol. 2, no. 4, pp. 315–339, 1990.

Guilherme A. Barreto (S’02) was born in Fortaleza,
Ceará, Brazil, in 1973. He received the B.S. degree
in electrical engineering from Federal University
of Ceará in 1995 and the M.S. degree in electrical
engineering from the University of São Paulo, São
Paulo, Brazil, in 1998 for the dissertation entitled
“Unsupervised neural networks for temporal se-
quence processing.” He currently he is pursuing the
D.Phil. degree in electrical engineering at the same
university. The theme of his Ph.D. research is self-
organizing neural networks for nonlinear systems

modeling and control.
His research interests are in the areas of unsupervised neural networks and

applications in robotics, time series modeling and prediction, and dynamic sys-
tems theory.

Aluizio F. R. Araújo was born in Recife, Pernam-
buco, Brazil, in 1957. He received the B.S. degree
in electrical engineering from Federal University of
Pernambuco, Recife, in 1980, the M.S. degree in elec-
trical engineering from the State University of Camp-
inas, Campinas, Brazil, in 1988, and the D.Phil. de-
gree in computer science and artificial intelligence
from the University of Sussex, Sussex, U.K., in 1994.

He worked in São Francisco Hidroelectrical Com-
pany for five years, and in 1998, he became an assis-
tant professor at University of São Paulo, where, in

1994, he was promoted to Adjunct Professor. His research interests are in the
areas of neural networks, machine learning, robotics, dynamic systems theory,
and cognitive science.

Christof Dücker received the diploma in com-
puter science from the University of Bielefeld,
Bielefeld, Germany, in 1995. He is currently
pursuing the Ph.D. degree in computer science from
the University of Bielefeld, working withing the
Neuroinformatics Group (AG Neuroinformatik)
and the Sonderforschungsbereich 360, Project D4
“Multisensorbased Exploration and Assembly.”

His field of research is the definition and imple-
mentation of robot manipulator control within the
SFB 360 context.

Helge Ritter studied physics and mathematics at the
Universities of Bayreuth, Heidelberg and Munich,
Germany, and received the Ph.D. degree in physics
from the Technical University of Munich in 1988.

Since 1985, he has been engaged in research in
the field of neural networks. In 1989, he moved,
as a guest scientist, to the Laboratory of Computer
and Information Science, Helsinki University of
Technology, Helsinki, Finland. Subsequently, he
was assistant research professor at the then newly
established Beckman Institute for Advanced Science

and Technology and the Department of Physics, University of Illinois at Ur-
bana-Champaign. Since 1990, he has been a professor with the Department of
Information Science, University of Bielefeld. His main interests are principles
of neural computation, in particular, self-organizing and learning systems and
their application to machine vision, robot control, data analysis, and interactive
man-machine interfaces.

Dr. Ritter was awarded the SEL Alcatel Research Prize in 1999 and the
Leibniz Prize of the German Research Foundation DFG in 2001.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


