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Abstract—A distributed robot control system is proposed based Such properties can reduce considerably the computational load
on a temporal self-organizing neural network, called competitive jnvolved in robot programming, which is an item responsible

and temporal Hebbian (CTH) network. The CTH network can ¢ i to one-third of the total cost of implementation of an
learn and recall complex trajectories by means of two sets of . . .
industrial robotic system [3].

synaptic weights, namely, competitive feedforward weights that y=
encode the individual states of the trajectory and Hebbian lateral ~ Many self-organizing neural networks (SONNs) have been
weights that encode the temporal order of trajectory states. proposed in order to learn, for example, inverse kinematics and
Complex trajectories contain repeated or shared states which dynamics [4]-[12]. This is accomplished by allowing the robot

are responsible for ambiguities that occur during trajectory arm to execute random movements within its workspace and

reproduction. Temporal context information are used to resolve ina th Thi fi i
such uncertainties. Furthermore, the CTH network saves memory Measuring theé sensory consequences. 1his action-perception

space by maintaining only a single copy of each repeated/sharedcycle, known a®iaget’s circular reactior{13], forms a closed-

state of a trajectory and a redundancy mechanism improves the loop control system that allows accurate motion to be learned
robustness of the network against noise and faults. The distributed py the network. What is learned is an associative mapping
control scheme is evaluated in point-to-point trajectory control between the randomly-generated motor actions and their

tasks using a PUMA 560 robot. The performance of the control di ffects. The | d ing is th
system is discussed and compared with other unsupervised and ©C'"eSPONAING Sensory eliects. The learned mapping IS then

supervised neural network approaches. We also discuss the issued/sed for control, i.e., every time the robot experiences a given
of stability and convergence of feedforward and lateral learning sensory pattern, it should provide the appropriate motor signal.

schemes. In the previous approach, successive robot movements are
Index Terms—Distributed control, neural networks, robotics, supposed to be uncorrelated with each other, i.e., the order in
self-organization, stability analysis, temporal sequences. which the motion occurs is not important. However, an inherent

property of robotic tasks is that they have a well-defined sequen-
tial nature in the sense that a given robot arm should assume
specific configurations (states) successively in time along a pre-
ONTROL of movements in both biological and artificialdefined path. This temporal characteristic is not incorporated
systems demands the availability of sevesesorimotor into the self-organizing learning procedures cited above, which
transformationsthat convert sensory signals into motor comimplies that only static sensorimotor transformations, such asin-
mands that drive a set of muscles or robotic actuators. Su@tse kinematics, can be learned by the network. In these cases,
transformations are highly nonlinear and it is very difficult tahe temporal order of the robotic task at hand is set in advance
express them in a closed analytical form. Artificial neural nepy the neural network designer.
works (ANNs) can be used to learn one or more sensorimotorAn alternative is to use temporal neural networks which can
transformations required to perform a given robotic task withodirectly cope with sequential aspects of the robotic task. For
precise knowledge about the parameters of the robot [1], [3.SONN to handlgéemporaldata, it must be given memory
Among the neural learning paradigms, self-organized (or unsbout past states of the task being modeled. Currently, four
pervised) learning schemes have appealing properties that m@shniques have been used for this purpose [14]. The first

. INTRODUCTION

justify their use in robotics. one addsshort-term memory(STM) mechanisms, such as
i) They do not need external supervision. tapped delay lineand/orleaky integratorsto the input of the
i) Training is usually very fast, which is important for SONN [15]. The second technique includes STM mechanisms
real-time applications. internally to the network in the activation and/or learning rules
iii) Information is represented in a localized fashion, facilif16], [17]. The third technique uses several temporal SONN'’s
tating the interpretation of the results. hierarchically, trying to capture spatiotemporal aspects of the

input sequence through successive refinements [18]. The fourth
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been widely used by unsupervised as well as supervised neur:
network models to model temporal characteristics of sensori-  a¢eral
motor control [22]-[31]. weights

The main motivation for the present work is to emphasize the
feasibility of applying temporal SONNSs to real-time, distributed
control of robotic manipulators. The contribution of the paperis
two-fold: i) It is the first one to report an implementation of a
controller for a robotic manipulator based on atemporal SONN,
and ii) the control task is designed to be performed in real-time
and in a distributed fashion. The design of the composite systen
(neural network based controller distributed communication
tool) is facilitated by the separation of the neural network desi
and the robot control task into two modules which are linke
through a distributed communication tool. The performance of )
the unsupervised neural learning algorithm combined with a df- Network Architecture
tributed communication tool is evaluated based on its ability to The architecture of the neural algorithm, cal@dmpetitive
learn and reproduce complex trajectories accurately and withaud Temporal Hebbia(CTH) network, is shown in Fig. 1. This
ambiguities. The resulting distributed neurocontrol system t&o-layer network is inspired by Grossberg’s Outstar Avalanche
simple, very fast, and robust to noise and faults. network [32] and Amari’s temporal associative memory model

The remainder of the paper is organized as follows. In Sg@3].
tion II, the neural network is presented and its learning and re-The CTH network consists of a broadcasting input layer and
call procedures are discussed in details. In Section 11, the rokptompetitive output layer, which carries out the processing.
control platform and its main components are introduced. A dishe model has feedforward and lateral weights that play dis-
tributed communication tool is also presented and its use in tfigct roles in its dynamics. This architecture differs from those
robotic task of interest is discussed. In Section 1V, several tegfsstandard SONNs by possessing context units at the input and
with the whole system (robet neural network based controllergelay lines at the output. The delay lines, however, are needed
+ distributed communication tool) are carried out. In Section ¥nly for training in order to learn unidirectional temporal tran-
some features of the proposed distributed, real-time robotic c@ffions. The goal of the CTH network is to provide a spatiotem-
trol system are compared with other self-organizing as well ggral sequence of robot arm configurations (states) between a
supervised approaches. The paper is concluded in Section \tarting and an ending position. The movement is executed by

an industrial manipulator comprising a set of joints individually
Il. NEURAL NETWORK MODEL driven by actuators.

It is assumed that the trajectories we are interested are finite! '® NEWOrK input vector comprises a sensorimotor vector
@ e k™, a fixed context vectoCr € R™, and a time-

sequences of discrete points. However, most signals in natdf . ! .

are analog and need to be discretized before simulation on df§fying context vectoCr(L,#) € R™™. The sensory input

ital computers. This is done by sampling at regular intervals a¥gctors(?) at time stegt is defined as

adopting a system in which time proceeds by intervala\of e

We will use the symbat to represent a particular point in time, s(t) = [r(1), 6(t)] (1)
wherer(t) € R? is the Cartesian position of the end-effector at

Feedforward
weights

[ Sensorimotor input }[ Fixed and time-varying ]
contexts

H;. 1. Architecture of the temporal neural network. For simplicity, only some
teral weights are shown.

wheret € {0, At,2A¢,3At,...}. In this formulation,A¢ can
be co_r1§|dered to be the unit of measure for the quantmyld time stept and(t) = {6;},i = 1, ..., dof, wheredof stands
thus, itis reasonable to omit the units and expreseply as a o gegrees-of-freedom, is a particular set of joint angles that
member of the set of integer numbers {0, 1,2,3, .. .}. produces(t). Eachs(t) defines the state of the robot arm at a
Then, one can define @majectory S as a finite set of state i en instant of time. In this sense, one can say that the CTH

— T m R . . "
vectorss(t) = [s1(t), sa(t),...,sn(D)]", s(t) € S C R™,  pepwork is used to associate a sequence of Cartesian position

grouped according to their order of occurrence in time, that i[s(,t) of the end-effector with a sequence of joint anglés)

S = {s(t),s(t —1),...,s(t = N + 1)} whereN is the length  heegeq to solve the robotic task at hand.

of the sequence. Trajectories can be classifiesimpleand  1e fixed context is time-invariant and usually set to a partic-
complex In complex ones, an individual state can occur Mot state of the temporal sequence, the initial or final one being
than once or it can be shared with other trajectories. We referfQ, ;s a| option. It is kept unchanged until the end of the current
either repeated or shared elements of a trajectorg@sent  geqence has been reached. This type of context acts as a kind
states. Simple trajectories are those without recurrent items. o 10hal sequence identifiefime-varying context is an STM

Complex trajectories are responsible for ambiguities thatechanism implemented tspped delay linefl4]. Thus
occur during the recall process, which are resolved through

additional contextual information. It is worth emphasizing Cr(L,t)=[s(t—1),...,s(t— L)]7

that the term context is used very generally here to mean any

secondary or additional source of information, derived fromwhereCr(t, L) € RI'™, L is an integer calledhe memory
different sensory modality, a different input channel within thdepth A suitable length of the time window is usually deter-
same modality, or the temporal history of the input. mined by trial-and-error (see Section V).
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B. Updating Feedforward Weights similarity radius avoids that the same state be learned by dif-
ferent neurons.
Thus, if neurory has never won a competition (i.&,(¢) =
0) or if the pattern stored in its weight vector is within the neigh-
. - . i aD® .
w;(t) = [wi(b), wf(t), w(1)] bc_Jrhood of the current input (i.e[)3(¢) < g) then neurory
will be evaluated, for the purpose of competition,By(t) only.
so thatw; () € R(E+2™ At each time step, the current statéOtherwise, this distance is weighted by the responsibility func-
vectors(t) is compared with each feedforward weight vector iion, €xcluding neurory from subsequent competitions. This

The feedforward weight vectov;, j = 1,..., M connects
the input units to the output neurgnwhich is defined as

terms of Euclidean distance as follows: behavior can be formalized in terms of a functifyt), called
choice functionas follows:
S(4) = —wi) —
Dj(#) = (s(t) - wj()" P (s(t) —wi(t)) (2 P { D3 (1), i D3(1) <corRi(t) =0 o
whereP € R™*™ is a diagonal matrix, calledrojection ma- ! R;(t) - Dj(t), otherwise.

trix, whose elements are set to 0 or 1 [34]. The makis used During training, we set < 1 in order to assign aifferent

to select the appropriate input variable to be used to search {afron to eachifferent(nonrecurrent) trajectory state. If a re-
the winner. For example, if the matri is chosen as peated item occurs, it will be mapped to the neuron that stored
its first occurrence. For the purpose of reproduction, the simi-
larity radius should assume higher values (kex 1) to avoid
incorrect evaluation of (3) resulting from measurement noise in
the sensory vector.

The output neurons are then ranked as follows:

wherel, is an identity matrix withdim(I,) = dim(r(¢)) X

dim(r(t)), and only the vector(¢) influences the search for Fur(®) < fua(®) < -+ < fuu (t) 4)

the winner. No matter what valu@st) assumes, it will not con- .

tribute to the computation ab3(t). A fixed context distance Where M is the number of output neurons, and(t),

DF(t) = ||Cr(t) — wr(#)|| and a time-varying context dis-? = 1,..., M is the index of theith neuron closest ts(t).
i T

tanceD? () = ||Cr(t, L) — w¥ (t)|| are also computed. While We considerk’ neuronsu(t) = [p1(t), pa(t), .., nxc (D],

D:(t) is used to find the winners of the current competition’s < M., as the winners of the current competition which

DF(t) and DY (1) are used to solve ambiguities during trajec"cPresents the current state veath) and its context.
The activation values decay linearly from a maximum value

tory reproduction. v
For accuracy in reproduction, every trajectory state shouffepax € R for p1(t), to @ minimuma,., € R for ux(t), as
be memorized for posterior recall in the correct temporal orddf!lows:
That s, allNV states of a trajectory should be stored and recalled { u (
max

Amax —Qmin ) ('L _ 1)7 forl S K (

in the correct order. Standard competitive networks, however, a,, = max(L,K—1) 5)

tend to cluster the input states by similarity and may split the 0, fori > K

trajectory in discontinuous segments, qausi_ng ajerky movemg\mereamax anda,,;, are user-defined. For= 0, the activations

of t_he robot arm. To_ overcome such a situation, the network “pgre set ta;(0) = 0, for all j. The responsibility functio; (t)

nalizes” each winning neuron by excluding it from subsequeptinen updated as follows:

competitions and, hence, avoiding that it stores more than one

state of the trajectory being learned. This “exclusion” mecha- R;(t+1) = Rj(t) + Ba,(t) (6)

nism is implemented through a functidgy;(¢), calledthe re-

sponsibility functionthat indicates if a neurogis already re- Where the constartt >> 1 is called theexclusion parameteFor

sponsible for the storage of a trajectory stateR|ft) > 0, t = 0, we setk;(0) = 0, for all j. Finally, the weight vectors

neuron; is excluded from subsequent competitionsk}{t) = W, (t) are adjusted:

0, neurony is allowed to compete. . s s
Furthermore, to save memory space, every time a recurrent Wit +1) =wi(t) +na;(t) [s(t) — wj(t ™

item occurs it should be encoded by the same neuron that stored Wf(t +1) :wJF(t) + na;(t) [Cr(t) — wf(t)] (8)

it the first time, otherwise many copies of this item will existin = T 4 1) :ij(t) +na,(t) [Cp(t —1) — w]T(t)] Q)

the network. However, according to the exclusion mechanism

implemented by the responsibility function, each neuron cavhere0 < n < 1 is the learning rate. Far= 0, w;(0) is ini-

win a competition only once. Thus, for each occurrence of gialized with random numbers between 0 and 1. Similar versions

item in the sequence, a different neuron is chosen to storeot.s(¢) may exist at the weight vectors of neurams .. ., ux

A possible way of eliminating such a problem is through theinners because,, < 1,7 = 2,..., K. The degree of simi-

definition of a constan® < ¢ < 1, calledsimilarity radius larity of these copies witk(t) is determined by the position of

This constant establishes a neighborhood around g@glin-  the neuron in the ranking shown in (4), which is reflected in the

side which the weight vectar(¢) can be considered sufficientactivation pattern in (5). The reason for the existence of several

similar tos(t). In other words, the exclusion mechanism avoidsopies of a trajectory state to provide the CTH network with

that different states are learned by the same neuron, while tath tolerance to faults and noise.

~
—
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Triggering state

C. Updating Lateral Weights regeTing S N
i () = Tmey.me SO g 70 CERY eTh
A set of lateral weightsn;(t) = [mj1,mja,....mim]", | o) L%

m;(t) € RM encodes the temporal order of the trajecton CrO,L) Network
states using a simple Hebbian learning rule to associate t *-----------. " S
winner of the previous competition with the winner of the
current competition:

Next state PUMA 560 §

™ Robot

t =0 : Switch closed
t >0 : Switch open

Measured state

Amj,(t) = 0, if mjr(z_f);«é() (10) Fig. 2. Closed-loop neurocontrol scheme for autonomous trajectory
I Aaj(t)a,(t —1), otherwise reproduction.

Yvhere? <A<l ISagain parameter. Thr0L_|gh (10), the n_etwor&TH network. Detailed discussion on clustering properties of
looks” backward one time step to establish a causal link cotg ) hetitive networks and theoretical analysis of their conver-
responding to the temporal transition between two consecutE{gnce process can be found in [36].

trajectory states(t — 1) — s(¢)*. This transition is encoded in ™| iora| | earning: The stability of temporal order learning
the lateral weight connecting the neurons associated with the gy o4l through time-dependent Hebbian learning rules, such
tivation paifa,,, (t 1), a,, (t)], i < K. Successive application oq yhat in (10), has been studied in-depth by [33] and [37]. In

of (10) leads to the encoding of the temporal order of the raj&g; icyjar, Herz [37] has achieved an important result: the recall

tory. Itis worth noting that (10} learns the temporal qrder of th&rocess of certain delay networks is governed by a Lyapunov
trajectory states, but does not memorize the duration betw

B “energy”) function. The corresponding insight is that the
states. Initially,m;,.(0) = 0 for all j, 7, indicating absence of 9y") P g Insig

| T he beginni f1h o time evolution during recall (i.e., the sequence of retrieved state
temporal assoclations at the beginning of the training. transitions) can thus be understood as a downhill march in an
A lateral connectionn, (t)

. ; ) 1S upda_ted only once, _av0|d|ng abstract spatiotemporal energy landscape.
the formation obiased transitionsAn incremental adjustment

of a lateral weight associated with a recurrent state would even- Recall of a Stored Trajectory

tually force this connection to assume high values. A strong Iat-O . i di b ieved either f .
eral connection wouldbias the recall process by favoring the. hce atrajectory is learned, it can be retrieved either from its

transition it encodes, even if the context information suggeé’ﬂ;itial or any intermediate state. The trajectory recall process is
the use of another transition a closed-loop control scheme (see Fig. 2) which comprises five

steps:
D. Stability of Feedforward and Lateral Learning 1) recall initiation;
2) computation of neuronal activations;
3) computation of neuronal outputs;
wi(t+1) = (1 = na;(t)) wi(t) + na;(t)s(t). 4) delivery of pontrol signals to the robqt;
5) determination of feedback sensory signals.

Thus, the weight vectow; can be modified such that its pre-For recall purpose, the parameféris always set to 1.
vious value is retained by a factor df ¢ na;(t)), whereas the 1) Recall Initiation: To initiate reproduction, any trajectory
current trajectory state(t) affects the weight by a factor of state can be presented to the network by the robot operator
na;(t). If we setn = 1, we getw;, (¢ +1) = s(t) forthe win- 4 — ¢ in Fig. 2). The fixed context is usually set to the target
ning neurory (t), where we also used the fact that (1) = 1 Cartesian position of the end-effector and the initial values of
as defined by (5). _ _ ~ the temporal context are set equal to the triggering state. For

Thus, the entire trajectory is stored, state-by-state, inasingle ( the network dynamics will then evolves autonomously to

pass of its states and their corresponding contextual informatigleq| the part of the stored trajectory that follows the triggering
In other words, there is no need to present a trajectory to g

netwgrk more than once..This strgtegy is referred toresshot 2) Computation of ActivationFor each input state, the ac-
learning(OSL) and constitutes an important feature of the CTE\/ation a,., of the winning neurory1, should be computed ac-

network.. By using the OSL strategy, convergence time rding to (5). The feedforward weight vectef, ofthe winner
substantially reduced compared to that of supervised networ: he closest to the current input state. !

OSL also gugran_tees high accuracy during trajectory recall. 3) Computation of OutputThe winner—the only output
In many situations, however, the OSL strategy may Iead_ KRuron witha;(t) > 0—will then trigger the neuron whose

. ) . . .‘\:/\7eight vector stored the successor of the current input state.
ularly true for trajectories having many states (high samplmlgni is possible because of the state transition learned during

r_ate). F(_)r these cases, the trajectory states have to be CI.USt%S raining phase and encoded by a lateral weight connecting
first. This can be ea5|ly_ _done through the CTH network if w ese neurons. Thus, the output equation is defined as follows:
set0 < n < 1. In addition, we have to se¢t = A = 0 to

avoid exclusion of neurons and temporal order learning during m
the clustering stage. Once the clustering stage is over, we use y;(t) = y* (t)-y*(t)- G <Z mjr(t)ar(t)> 11
n=1,0> 1and0 < X < 1, thus proceeding with the OSL r=1
and lateral order learning schemes as defined originally for t\r)v%ere F
Yy (1)

Feedforward Learning:Equation (7) can be rewritten as

= 1-Df(t)/>L, DF(t) andy™(t) = 1 —
IThis is the reason we us@r (+ — 1), rather tharC (1) in (9). DJT(t)/ S DI (t). The functionG is chosen so tha(u) >
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0 anddG(u)/du > 0. Fort = 0, the output values are set tocurrent commercially available robot controllers, such as lack
y;(0) = 0, for all 5. of computational power, lack of expandability or compatibility
It is worth noting that for a simple trajectory, the third factoto other systems, and not much transparency of their program-
on the right-hand side of (11) alone will correctly indicate thening languages or operating systems.
neuron that stored the next state of the trajectory. For a complexn industrial applications the robot is programmed in an in-
one, additional disambiguating information is required, sinderpreted robot language VAL Il. The VAL Il software was re-
the third factor will produce the same valueyft) for all can- placed, since the main controller LSI-11 is not capable of han-
didates for the next state. The ambiguity is resolved by the fidling high bandwidth sensory input itself. Furthermore, VAL
and second factors on the right-hand side of (11); the candiddtdoes not support flexible control by an auxiliary computer.
neuron with the highest values for the first and second factdrs achieve a tight real-time control by the Unix workstation it
or, equivalently, the one with the lowest values mf (t) and was installed the software packagebotControl C Library and
DY (t) is considered the correct one to be chosen. Real-timeControl Interface (RCCL/RCI) [38]. This package al-
4) Delivery of Control Signals:The control signal to be de- lows the user to issue robot motion requests from a high level
livered to the robot is computed from the weight vector of theontrol program (“planning task” which is written and executed
neuron with highest value of; () and the matri®® = (I- P) as an ANSI C program) to the trajectory level (“control task”)
as follows: via shared memory communication. The control task is exe-
newt 0 cuted periodically at a high priority (kernel mode) and is re-
Uy (t) = Pwi(t) = P (;nm> = <0nm) (12) sponsible for reading feedback data, generating intermediate
joint set-points and carrying out a “watchdog” function. During
each control cycle (typically 20 ms), a command package is
the joint angles associated withe”* . sent to the robot controller via the parallel port. The receiving

5) Determination of Feedback Signal&Vhen the robot arm main controller LSI-11 CPU is reprogrammed to dispatch com-
attains its new position, a new sensory veetds formed with mands to the joint servos, collect feedback data from them and

current sensor readings and presented to the CTH netwd?R/orm eIgmentfary safet;(; chelcksd. 'gt p%wer—updtirg]e Lhehre-
Thus, sensory signals provide feedback information about tRE29ramming software is downloaded and started by the host

current state of the arm after the execution of a given motGpMputer through a serial line, emulating the controller console.
action. The steps 2-5 continue until the end of the storddi€ software then resides at the controller and can be addressed

trajectory. through the parallel port.

Itis worth noting that, during the recall process, if the network | NiS robot control scheme was proposed by Walter and

receives as input a state belonging to the stored trajectory>fhu!t€n [8]. The present work introduces some new ideas and

searches for another stored state, such that the latter fomigpggove;ne.?ts. Spebcifically, a user-friendly dinter:;gce V\;"’f‘s ddel:\)/ el-k
state transition together with the input state. This is equivalent‘i’Be tofacilitate robot mothn requests andreading ot feedbac
saying that the network “looks” forward one time step, in ordéjra_ta' Instead of programming the planning and control levels
to output the stored pattern that succeeds in time the current o ng the C—Ianguage functions of the. RCCL/RCI p_ackage
In summary, during learning the network hapast-oriented .wh|ch demands high degree of expertise), the user includes

behavior, whilst during recall the network haguture-oriented N his/her C code for the neural network simple function calls,
(one-ste;; ahead) behavior which commands the robot in a transparent way. Moreover,

the robot control (motion requests) can be performed remotely,
i.e., the neural network can control the robot from any personal

computer connected to the same local area network.

In the currentimplementation, we used the PUMA 560 robot,
a manipulator with 6 degrees of freedom connected to the UBi- Tool for Distributed Processing
mation Controller (Mark Ill) which itself contains sever:_il ©on- ysually, in the fields of artificial intelligence, pattern recog-
trollers. The separate servo controllers, one for each joint, &figion and robotics, different modules designed to execute a spe-
driven by a main controller LSI-11/73 CPU. Large parts of thgific task must be integrated. Each of these modules has its own
original PUMA controller software were replaced and a VMEgata structure and analyzes a certain type of pattern. An effi-
based SUN Sparcsystem 4/370 workstation was employedgignt communication among different modules is crucial to the
directly control the robot in real-time via a high speed comMmusqrect functioning of the distributed control system as a whole.
nication link. In addition, we developed a simple user-interfagg,, this purpose we use a new communication framework called
based on a distributed communication tool that allows the rob8stributed Applications Communication Syst¢BACS), de-
to be controlled remotely from any pe_rsonal computer attach§g|oped by Finlet al.[39]. The DACS communication tool was
to a local area network. Details are given next. designed to integrate heterogeneous pattern analysis systems
that handles different types of data structures. Its functioning is
based on thelient-serverarchitecture: a central computer (the

Neural-based control algorithms for a robot require the capserver) manages the resources of the network system, supplying
bility to quickly process and respond to high bandwidth sensoogher machines (the clients) with the routes for the requested re-
input coming from, for example, a video camera. The design sburce. The DACS tool provides a simple set of functions and
a distributed control system has to overcome the limitations liéraries for applications to communicate with remote modules.

wherej* = arg max; [y;(¢)]. Note thatu...;(¢) outputs only

I1l. ROBOTIC PLATFORM

A. Hardware and Software for Low-Level Robot Control
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Machine “caesar” Name Server Machine “geppetto”

Applications

Client Application (caller) Server Application (provider)

Robot <» geppeto

move move o

| >  DACS ;> Net <«—»caesar DACS
i~ daemon Functions daemon "Robot"
Net €| Robot@geppetto | move <«—» Robot
Local List Robot@geppetto Local List
Net 3 "1 Robot
4 L
< P Net@caesar 35

7 N 6

Fig. 3. Interactions during a synchronous function call.

The client computers as well as the server run locally, in backempleted, the new position of the robot is read by the sensors
ground, a program called DACS-daemon, which is responsitdad the way back is performed. That is, it goes from the robot
for encoding/decoding the data and for correct addressingtofRCCL/RCI application, from RCCL/RCI to the server, which
the requests. Each module (application) has to register with th@nslates the feedback signal to the neural network syntax, and
system under a uniqgue name that is immediately passed téran the server to the neural network via DACS. The entire
name server and enables other modules to address it. The DAE&ess is transparent for the neural network user; the only thing
library and daemons are realized as several parallel tasks usie¢she has to know is the DACS syntax to implement the RPC.
thread$ [40]. To avoid that faulty communication links block Details about the interaction between the CTH network
the whole system or cause deadlocks, separate threads are s@tligmt) and the RCCL/RCI package (server) during a syn-
for each module and each connection to another module. Locafonous RPC through DACS is shown in Fig. 3. The
connections are created when an application registers with @gplication calledrobot provides a function callednove In
daemon to last until the application unregisters. Network cofhe machinecaesar the applicatiometresides, only knowing
nections are set up dynamically depending on the messaget& there is a service provided by the functiooveavailable
be sent. Each message has to pass a central routing thread t@@éwhere in the system. The applications and the functions are
termine the appropriate connection to be used. This introducdkeady registered in the name server at this stage. Seven steps
a potential bottleneck, however, only simple operations havedte performed by DACS to carry out a synchronous remote
be carried out by this thread. procedure call to functiomovefrom functionnet

To access a particular module, a client performaraote pro- 1) Thenetapplication sends a message to the local DACS-
cedure cal(RPC): a message requesting the use of that module. ~ daemon, addressing it toove This message is tagged as
In the case of acceptance, a bidirectional synchronous RPC is type “function” which affects the resolving of the address.
established. This type of RPC blocks the requesting process?) Using an usual RPC to the name server, the DACS-
(client) until a feedback signal from the server arrives, while ~ daemon determines where the functimoveis located.
an asynchronous one does not. To allow transparent communi- | he result of the name server request is the full address
cation between modules, C language-dependent data structures ©Of the application that registered the functiorove—
used to implement the CTH network are transformed by DACS __ fobot@geppettan this case.
to a typed and flexibly structure callddetwork Data Repre-  3) The DACS-daemon onaesarsends the message to the
sentation(NDR) within the application-attached communica- DACS-daemon omgeppetto _
tion front end. This transformation avoid problems with data 4) Th_e applicationobotis fo_und In the table of IOC"?" aF_’p“'
type inconsistency arising from unidentical data interface defi- cations, s the message 1S dellvered_to the application pro-
nition between service requester and service provider. The data viding the functiormove The DACS library decodgs the
transformations can either be achieved using available routines a_lddress and thg arguments and calls the appropriate func-
to generate primitive NDR-objects directly or by automatically tion. The result is encoded and addressed to the sender of
generating conversion functions from data type definitions. the message—her&et@caesar

) . S 5) The result is delivered to the local DACS-daemon on the

In this paper, the client application is the CTH network that

. . L machinegepetto
delivers, by means of a synchronous RPC, contr.ol S'gf.‘"?"s (Joth) This daemon delivers the message directly to the daemon
angles) requesting the robot to move to a certain position. The

. on machinecaesar Note that at this point no call to the
server processes such an RPC, encodes it to the RC,CL/,RC| name server is necessary since the address is already
syntax, and sends the request to the RCCL/RCI application,

known.

which sends the control signals to the robot. After the motion is 7) Finally, the daemon delivers the message locally to the

2In programming, a part of a program that can execute independently of other net appI!catlon where the I'brary decodes the result and
parts. returns it to the caller.
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IV. TESTSWITH THE DISTRIBUTED CONTROL SYSTEM TABLE |
STORED AND MEASURED(IN ITALIC) VALUES OF THEJOINT ANGLES FOR

The CTH network presented in this paper was prewously A SIMPLE TRAJECTORY. MSE VALUES FOR THEJOINT ANGLES ARE
evaluated in robotic tasks through simulations [30]. Simulations GIVEN IN THE LAST LINE

have the same advantagesaidf-line robot programming and 77 6. | 6> 6s | 6s | 65 06

constitute an important step toward the complete evaluation ofT | -90.019 | -120.389 | 1.008 | 0.0150 | -63.585 | 89.889

a robot control system. This is particularly true when the imple- -89.993 | -119.723 | 4.665 | 0.1042 | -62.677 | 90.02
2 | -78.953 | -118.327 | 0.787 | 0.0071 | -62.121 | 100.958

PO : 2
mentation in a real robot is c_ostly, dangerous to humans, orcar” | "0/, 118411 | 0.905 | 01042 | -62.488 | 100.551
damage the robot hardware if the user is not an expert. Howevers T -60.901 | -118.567 | L.115 | 0.0009 | -62.550 | 110.012
simulation environments are only an approximation of reality. -70.274 | -118.536 | 1.149 | 0.1042 | -62.443 | 109.575
Thus, the ultimate goal of a neurocontrol algorithm developed ! | 60-777 | -120.811 1 4.679 1} -0.0057 1 -63.829 1} 119.110

; N : -61.103 | -120.744 | 4.551 | 0.1042 | -63.740 | 118.785
under simulated conditions is to be implemented as a controllers 53833 [ -121.313 | 10317 | -0.0101 | -65.968 | 126.09G
of a real robot. The PUMA 560 robot used in the tests belongs__ | -54.065 | -124.216 | 10.128 | 0.1042 | -65.852 | 125.804

to the Laboratory of Robotics of the Neuroinformatics Group at ¢ | -18.706 | -128.386 } 17.031 | -0.0135 | -G8.G11 | 131.213
-48.95¢ | -128.186 | 16.691 | 0.1042 | -68.460 | 130.922

the University of Bielefeld, Bielefeld, Germany. o T 3387 T 26300 | -0.0162 | 2150 T 135952
Simple and complex trajectories were generated by moving_ | -44.149 | -133.591 | 25.928 | 0.1042 | -72.279 | 135.724
the robot arm through specific pathways within its workspace, 0.0751 | 0.0801 | 0.1092 | 0.0116 | 0.1305 | 0.1033

sampling at regular intervals and recording the corresponding
joint angles and Cartesian positions of the end-effector. Themramme
trajectories were then used to train the network. It is wor( ;%
noting that the network training procedure could be carried off &+
on the fly i.e., while the trajectories are being generated. It
also possible for the robot operator him/herself to specify 3 . - ==
sequence of angular positions that obeys the range of vall - i=2 j=3 j=1 =5 j= =7
imposed to the joint angles, without actually moving the robencary.
and then to compute the corresponding Cartesian positicf#
of the end-effector through the forward kinematic functio
available in the RCCL/RCI package.

The ranges of values for the joint angles are the following (

degrees): i 3 A 4 t 15 h
. 0, € [~120,45]; T e A
* 62 € [-140, -90]; Fig. 4. Learning (upper row) and recall (lower row) of the states a trajectory.
* 05 € [-5,90]; White circles mark the positions of the end-effector.
* 6, € [-90,90];
* 05 € [—80,0]; which is a value sufficient to move the arm fast enough and
* s € [30,150]. to produce accurate measures of the joint angles. The errors

The fixed context is always set to the final Cartesian position between stored and measured joint angles are computed by
the end-effector for a given trajectory. The temporal context ha¢SE; = (1/T) Zt 10m(t) — 65(¢)]?, where§™ and 65
depthL = 2,i.e.,Cr(L,t) = {s(t—1),s(t—2)} and its initial are the measured and stored values of e joint angle,
value isCr(L,0) = {s(0),s(0)}, wheres(0) is the triggering respectively.

state. The values of the other parameters are the following:  In the first test, it is shown which neuron stored a partic-
1076 (training),e = 1 (recall),amax = 1, amin = 0.98, 3 = ular state of a trajectory and its order in time during trajec-
100, n = 1, andX = 0.8. tory reproduction. For this test, it was used a simple trajectory

Two trajectories, a simple and a complex one were presentgth N = 7 states, approximately drawing a straight line. For
to the CTH network only once (sinee= 1), one after the other. simplicity, since there is no recurrent state, a network of only
After atrajectory is learned it can be retrieved, in a state-by-staté = N = 7 neurons is trained witlk = 1. The upper row of
basis, through the scheme depicted in Fig. 2. Every angular pdsg. 4 shows each neurgrof the network, numbered from left
tion achieved by the robot is measured through optical encodtg#sight and the trajectory state each one stored. The lower row
mounted at each joint and then sent to the network input to caf-Fig. 4 shows the sequence of active neurons during a correct
tinue the recall process. This process is repeated until the drajectory reproduction. Table | shows the numerical values of
of the trajectory has been reached. A polynomial is fitted to tlilee joint angles stored in the CTH network for the trajectory in
sequence of retrieved joint angles in order to smooth the rolfog. 4 and the values measured by the optical encoders which
movements. were used as feedback signals during trajectory reproduction.

The measurement of angular positions by the optical en-For the next test, we sdt = 2 and increased the number
coders is inherently inaccurate, depending basically on th&neurons tal/ = 30. Fig. 5(a) shows a sequence of arm po-
sensor calibration and the end-effector velocity. The fastersions approximately describing an eight-figure trajectory, to-
the end-effector, the higher is the inaccuracy due to dynangether with the index of the neuron that stored the position and
coupling between arm segments. For all the tests perforntbe corresponding instant of occurrence of that position. This
in this paper, the end-effector velocity was set to 0.5 m/gajectory has seven states with an intermediate state occurring
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TABLE 1
STORED AND MEASURED (IN ITALIC) VALUES OF THE JOINT ANGLES
FOR AN EIGHT-FIGURE CLOSED TRAJECTORY. MSE VALUES FOR THE
JOINT ANGLES ARE GIVEN IN THE LAST LINE

l I 8, I 5 J 63 l 64 I 65 [ [
1 | -90.000 | -135.000 0.000 0.000 | -15.000 90.000
-89.478 | -134.822 0.2011 0.0189 | -45.414 90.512
2 -70.583 -122.661 -1.3379 0.0082 -55.997 109.368
-70.958 | -122.543 | -1.1261 0.0189 | -56.335 | 108.980
3 -53.631 -136.899 6.1990 0.0082 -19.597 126.317
-53.990 | -136.600 | 6.3412 | 0.0189 | -49.748 | 125.939
1| -H3.631 | -121.623 13.588 | 0.0066 | -71.962 | 126.320
-53.617 | -122.159 | 13.359 | 0.0189 | -70.971 | 126.260
5 | -70.583 | -122.661 | -1.3379 | 0.0082 | -55.997 | 109.368
-70.199 | -122.643 | -0.9854 | 0.0189 | -56.361 | 109.726
6 | -90.007 | -116.281 8.1602 | 0.0070 | -72.181 89.917
-90.019 | -116.804 | 8.2314 | 0.0189 | -71.221 | 89.8762
71 -90.000 -135.000 0.000 0.000 -15.000 90.000
-89.467 | -134.684 -0.0201 0.0095 | -45.319 90.504
[ 0.0355 | 0.1135 | 0.0185 | 0.0002 | 0.3195 | 0.1352

Cr [ St=4 Sz=3]

fixed context time—varying context

sensory vector

Fig. 6. Resolving ambiguities during recall of complex trajectory.

Fig. 6 illustrates how (11) treats ambiguities. No matter what
branch of the figure-eight the robot arm is currently executing,
when it arrives at the crossing poirtt£ 2 andt = 5), it has
to decide between one of two possible directions to follow. This
ambiguity is resolved by the time-varying context. The states
s;—» ands;_s are equal, but they occur in different temporal
contexts. During training both states were stored by negiren
27 (Fig. 6). During recall, when the robot arm reaches the state
s¢—5, the network has to decide which is the next state (control
signal) to be sent to the robot. Following the lateral connections
in Fig. 6, the candidates for the next trajectory state are stored
in the weight vectors of neurorjs= 3 and;j = 13. Since the
repeated states belong to the same trajectory, the fixed context
is the same for the two neurons. Only, the time-varying context
Fig.5. Eight-figure trajectory performed by the PUMA 560 robot. The arrowgontains the information (past states) that can extinguish the am-
represent state transitions. biguity: C1(5,L) = {si—4, si—3}. This information matches

exactly with that in the lower portion of the weight vectog,
twice ¢ = 2 and¢ = 5) but in different temporal context. i.e., Cr(5,L) = w3 . Hence,D3 (t) < D{;(t), implying that
Eight-figure trajectories, due to the existence of recurrent statgs,> y13. Thus, neurory = 3 is chosen and the control signal
have been widely used as benchmark in temporal sequenceseéxtracted fromws as shown in (12).
call to demonstrate the role of temporal context information. Table Il shows typical results for reproduction of the eight-
Table Il shows the stored and measured values of the joint digure trajectory obtained for different situations. The second
gles obtained for the eight-figure trajectory. line shows the firstwinners, i.e., those labeled ag) in (4), for

=147 j=I9
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TABLE I have to be learned, the robot operator may experience difficul-
WINNING NEURONSDURING TRAINING AND RECALL. (RECALL-1) THE ties in setting the temporal order of the states of the trajectories
TEMPORAL CONTEXT IS TURNED OFF. (RECALL-2) NEURONAL FAULTS ARE . . .. .

SIMULATED . (RECALL-3) NOISE IS ADDED TO THE INPUT and resolving all potential ambiguities due to recurrent trajec-

tory states. Thus, any trajectory learning algorithm that reduces
t=1|t=2|t=3 | t=4|t=5|t=6 | t=7 the time the robot takes off-line is welcome. The CTH network

Training | 19 | 27 | 13 4 27 3 19 described in this paper was designed with this goal in mind

Recall-1 | 19 27 3 19 27 3 19 since the learning process is very fast, can be carried out in an
Recall-2 | 5 29 | 28 5 29 1 5 online fashion and the resolution of ambiguities requires min-
Recall-3 | 19 | 22 | 13 4 27 1 19 imal human supervision. In addition, the CTH network exhibits

some tolerance to neuronal failure and to noise, properties that
are not present in the conventional (nonadaptive) look-up table

the seven time steps of the stored the trajectory during trainifgethods [42]. These two aspects are particular important if the
The third line (recall-1) shows those neurons activated durif§oPosed method is to be implemented in hardware.

the reproduction phase disregarding the temporal context infor t i important to note that the CHT network acts basically
mation. It can be noted that errors occurred since the active nég-2traiectory planneror high-level trajectory controllerset-
rons during training are different from those active during rding the reference values for the low-level joint controllers at

call. The consequence of an error is that the robot arm can gf:h time step. In this paper, the joint controllers are conven-
gir)nal PID controllers, but other control methods, such as fuzzy

90 throu_gh the t.WO sides of the eight-figure trajectory, bein neural, could be equally used. Thus, the CHT network can
trapped in one side oqu, as shown in Fig. 5(b) . be applied independently of the type of low-level controllers.
The next two tests illustrate the fault and noise tolerance PFe feedback pathway shown in Fig. 2 allows the CTH network
the CTH network when trained \_N'tH > L. The fourth line to work autonomously, monitoring the trajectory reproduction
(recall-2) shows the neurons activated after simulating the cBFocess in a step-by-step basis. This is important for safety pur-

lapse of all.; neurons. Sincél” = 2, the responsibility for the ,,seq since a trajectory only continues to be reproduced is the
reproduction of the trajectory is assumed by the second Wiuqhack pathway exists.

ners, i.e., those neurons labeledasduring training. Sinceé  thys, if any problem occurs during the execution of the re-
Uy = Gmin < @y, = Gmax, the trajectory is reproduced with gyired motion by the robot, such collision with an obstacle or
an error (/SE,, = 0.13589) that is slightly higher than that the joints reach limit values, the feedback pathway can be in-
obtained by summing up the last line of Table Il and averagiRgrrupted and the reproduction is automatically stopped. The
over the 6 joints Y/ SE,, = Y;_, MSE;/6 = 0.131). The conventional walk-through method does not possess the feed-
fifth line (recall-3) shows the neurons activated when simulategck pathway. In this case, all the trajectory states are sent to
Gaussian white noise (zero mean, variance=0.1) is added togheemory buffer and executed in batch-mode. If any problem
network input. The additional noise forces the network to selestcurs, one has to wait for the execution of the whole trajec-
sometimes the second winners rather than the first winnerstasy in order to take a decision or to turn-off the robot power.
shown in Table Il fort = 2 and¢ = 6. This occurs because From the exposed, we can say that the neurocontrol scheme
the second winners are now closer to tlmésyinput states than shown in Fig. 2 is a kind a$elf-monitored trajectory reproduc-

the first winners, in an Euclidean distance sense. Dependingtim approach.

the magnitude of the noise, incorrect evaluation of the neurongGeneralized Versus Specialized Inverse Modeling and Con-
can occur, impairing the trajectory reproduction, however sudi®l: It can be said that we have proposed a neurocontrol system
a situation was not observed in the experiments. This robustnééich implements &pecialized inverse modeling and control
property of the CTH network is equivalent to that of the SOMchem¢l] in the sense that the CTH network is used to train the
model [36]. The main difference is that the neurons in the CTREtwork to operate in specific (localized) regions of the robot

network do not need to be arranged in a fixed lattice with prguorkspace defined by the learned trajectories. Other real-time
defined neighborhood relationships. implementations of self-organizing architectures implement a

generalizednverse modeling and control scheme since they try
to learn sensorimotor mappings globally [4], [8]-[10].

The success of the generalized method depends on the ability

The CTH network was applied to the learning of roboofthe neural network to generalize correctly to respond to inputs
trajectories, a common problem in industrial scenarios. Usiithas not been trained on. Thus, the training samples will have to
ally, a trajectory is “teached” to the robot by the so-calledoverthe input space of the plant and hence this procedure is not
walk-throughmethod, in which an operator guides the robotery efficient since the network will have to learn the responses of
end-effector through the sequence of desired positions [4it]e plant over a wide range than what may be actually necessary.
These positions and their temporal order are then stored in #& pointed out by Prabhu and Garg [1] the specialized scheme
controller memorylpok-up tablg for posterior recall by the op- produces more accurate positioning results and is suitable for
erator him/herself. This method is time-consuming and costhy-line learning as we have shown in this paper.
because the robot is out-of-production during the trajectory Furthermore, none of the generalized real-time learning
learning process. Furthermore, as the trajectory being learrsstiemes cited above take into account temporal aspects of
becomes more and more complex and/or several trajectoriles robotic task. As far as we know, our approach is the first

V. DISCUSSION
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real-time implementation of a specialized inverse modeling atm be known at compile time. The necessary knowledge of the
control system that automatically takes into account sequenti@stination machine when getting the client handle makes it
aspects of the robotic task. Several supervised approaches treare to distribute several modules in a dynamical way [45]
been proposed and simulated [22], [23], [28], but they are Another possibility is to use theVM [46], which is a well-
not suitable for online learning since they require a very lorighown standard system used to parallelize complex algorithms.
training process. However, the PVM is a totally distributed system without a cen-

Comparison With Other Temporal SONNSs for Robotigge tralized instance of a service to keep track of the system con-
have noted that few temporal SONNs have been applied figuration which results in an enhanced overhead during recon-
control of manipulators [25], [29], [31]. The network byfiguration. Furthermore, the facilities to exchange data between
Althofer and Bugmann [25] cannot handle trajectories witheterogeneous architectures are very basic. Several other tools
recurrent states, whereas the model by Barreto and Araujo [P8)ve been investigated by Fiek al, [39], but due to reasons
can only deal with trajectories with shared states. None of th&ifinilar to the ones mentioned above, they were not selected to
can learn and recall trajectories that contain both repeated &gdgused in the distributed system proposed in this paper.
shared states.

Another network by Barreto and Araujo [31] is able to handle VI. CONCLUSIONS

rgcurrent traj_ectory states but uses memory space inefﬁcientl)1n this paper, we demonstrated the feasibility of using a tem-
since every time a recurrent state occur it is stored by a neurox). self-organizing neural network to real-time control an in-

d.|ffgrer.1t from the one that stored this state previously. T strial robot. The implementation of the control scheme is fa-
similarity radius mechamsm .allows the CTH NEwork 10 Savgiate by the separation of the network design and the robot
memory space by mqlntammg only a single copy of eaC&)ntrol task into two distinct modules which are linked through
recurrent state of a trajectory. For example, to store the Sevefyibted communication tool. The resulting distributed neu-
states of the eight-figure trajectory, the network by Barreigy.q o) system is simple, fast and robust to noise and faults.
and Aradjo [_31] requires seven neurons, Whgreqs the ,CT e believe that the proposed distributed control system is
network requires only five neurons, as shown in Fig. 6, singg, i enough to be further improved and applied to standard
the recurrent states are stored only once. The larger the numRBa, s4ria| robotic manufacturing systems, assembly lines, spray
of occurrences of a given state of the trajectory, the larger tBﬁinting, selective soldering, point soldering, etc.
savings in memory use.

Selection of CTH Network Parameter$he CTH network
has a relatively high number of nine parameters, but they are o
fairly casy o select. f one always Sehu, = 1 = A = 1, the (1 5 M. Prabh and D, Garg i newrl et based oo
other parameters can be chosen as follows: [2] S. N. Balakrishnan and R. D. Weil, “Neurocontrol: A literature survey,”

_ : Math. Comput. Modelingvol. 23, no. 1-2, pp. 101-117, 1996.
1) A value = 100 or 1000 suffices to exclude neurons [3] J. Heikkonen and P. Koikkalainen, “Self-organization and autonomous
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